
www.manaraa.com

International Journal of Advanced Computational Engineering and Networking, ISSN: 2320-2106, Volume-4, Issue-4, Apr.-2016

Information Systems And Software Engineering

48

INFORMATION SYSTEMS AND SOFTWARE ENGINEERING

1VO KY QUANG, 2NOR HIDAYATI ZAKARIA, 3BUI TRONG HIEU

1Asia e University, Malaysia. 2Information Systems Department, Faculty of Computing, University Teknologi Malaysia,
Malaysia

3Faculty of Information Technology, HoChiMinhCity University of Transport, Ho Chi Minh City, Vietnam
E-mail: 1quang.vo668@gmail.com, 2hidayati@utm.my, 3hieubt@hcmutrans.edu.vn

Abstract- In my research paper, we want to understand more about Information Systems and Software Engineering. We
understand what software engineering is and why it is important; the development of different types of software systems
may require different software engineering techniques and some ethical and professional issues that are important for
software engineers. With information systems, We understand more about it by learning about the concepts, components of
information systems, Computer hardware, Computer software, and Telecommunications, Database and data warehouse.

Keywords- Information Systems, Software Engineering, Computer hardware, Computer software, Telecommunications,
Databases, Data Warehouse.

I. INTRODUCTION

Software engineering is concerned with all aspects of
software production from the early stages of system
specification through to maintaining the system after
it has gone into use. In this chapter, we will explain
the following:
• the definition of computer science and software
engineering and how the two are different
• software engineering is similar to other engineering
disciplines and what that means for software
engineers
• the unique challenges of software engineering
• software development models and processes and
their component parts, software development
practices
Software engineering has progressed very far in a
very short period of time, particularly when compared
to classical engineering field (like civil or electrical
engineering). In the early days of computing, not
much more than 50 years ago, computerized systems
were quite small. Most of the programming was done
by scientists trying to solve specific, relatively small
mathematical problems. Errors in those systems
generally had only “annoying” consequences to the
mathematician who was trying to find “the answer.”
Today we often build monstrous systems, in terms of
size and complexity.
What is also notable is the progression in the past 50
years of the visibility of the software from mainly
scientists and software developers to the general
public of all ages.
“Today, software is working both explicitly and
behind the scenes in virtually all aspects of our lives,
including the critical systems that affect our health
and well-being.” (Pfleeger, 1998) Despite our rapid
progress, the software industry is considered by many
to be in a crisis.
Like all engineering discipline, software engineering
is driven almost by three major factors: cost,
schedule, and quality. The cost of developing a
system is the cost of the resources used for the

system, which in the case of software, are the
manpower, hardware, software, and other support
resources. Generally, the manpower component is
predominant, as software development is largely
labor-intensive and the cost of computing systems is
now quite low. Hence, the cost is considered to be the
total number of Person-months spent in the project.
Schedule is an important factor in many projects.
Business trends are dictating that the time to market
of a product should be reduced; that is, the cycle time
from concept to delivery should be small.
Though high quality, low cost (or high productivity),
and small cycle time is the primary objectives of any
project, for an organization there is another goal:
consistency. An organization involved in software
development does not just want low cost and high
quality for a project, but it wants these consistently.
In other words, a software development organization
would like to produce consistent quality with
consistent productivity. Consistency of performance
is an important factor for any organization, it allows
an organization to predict the outcome of a project
with reasonable accuracy, an to improve its processes
to produce higher-quality products and to improve its
productivity.
Information system: an integration set of components
for collecting, storing, and processing data and for
delivering information, knowledge, and digital
products. Business firms and other organizations rely
on information systems to carry out and manage their
operations, interact with their customers and
suppliers, and compete in the marketplace.
The value of research, when study subjects will help
readers understand more about Information Systems
and Software Engineering. And understand more
about concepts, components of information systems,
Computer hardware, Computer software,
Telecommunications, Databases and data
warehouses,… We know what software engineering
is and why it is important; the development of
different types of software systems may require
different software engineering techniques and some

www.manaraa.com

International Journal of Advanced Computational Engineering and Networking, ISSN: 2320-2106, Volume-4, Issue-4, Apr.-2016

Information Systems And Software Engineering

49

ethical and professional issues that are important for
software engineers.

II. LITERATURE

1. Software engineering
The wider context for this study is that of
investigating the use of the evidence-based paradigm
in software engineering. The possibility of applying
the evidence-based paradigm to the software
engineering field was raised, discussed and
enthusiastically supported at ICSE 2004 (Kitchenham
et al., 2004). The goal of evidence-based software
engineering (EBSE) is summarized by Kitchenham et
al., as being: “to provide the means by which current
best evidence from research can be integrated with
practical experience and human values in the decision
making process regarding the development and
maintenance of software”.
Performing a systematic review involves several
discrete activities, which can be grouped into three
main phases: planning; conducting the review; and
reporting the review. Fig. 1 illustrates the overall 10-
stage review process.

Fig 1. Systematic literature review process.

Systematic literature reviews are primarily concerned
with the problem of aggregating empirical evidence
which may have been obtained using a variety of
techniques, and in (potentially) widely differing
contexts—which is commonly the case for software
engineering. While they are used in information
systems research (Webster and Watson, 2002), they
are less common in software engineering (however,
see (Glass et al., 2002) as an example of a secondary
study that samples literature within the software
engineering domain). Indeed, at the present time,
outside of information systems research, reviews in
any form, as well as review journals are really not
part of the computing research culture, which focuses
almost entirely on publishing primary studies.
To understand the role of evidence, we need to
recognize that, across a wide spectrum of disciplines
of study, there is a common requirement to find
objective practices that can be employed for
aggregating the outcomes of different empirical

studies in a consistent manner. The range of forms
and issues is very wide: at the one end, aggregating
(say) experimental studies measuring the mass of the
electron is largely a matter of using mathematically
based transformations to adjust for variations in
experimental conditions; whereas drawing together
the results from a set of surveys, that may have
employed different sets of questions and been
administered to rather different populations, presents
a much less mathematically tractable problem. One of
the key issues underlying this difference is the role of
the human in the process of data collection: in the
former the only involvement is as an external
observer, while in the latter, the human is a
participant in the treatment itself. In order to
investigate the applicability of systematic literature
reviews to the software engineering domain, the
authors (with others) have undertaken, or are in the
process of undertaking, a number of reviews which
aim to address a range of software engineering
questions. These reviews are summarized in the
following sections using the structured abstract
headings (context, objectives, methods, results,
conclusions) which form part of the recommendations
for reporting systematic reviews (Khan et al., 2001).
In addition, for each of the reviews, there is a brief
introduction and a description of its current state. The
reviews have used Kitchenham’s guidelines as
described in (Kitchenham, 2004) or, in some cases, in
earlier versions of the report.

2. Information Systems
A computer (-based) information system is essentially
an IS using computer technology to carry out some or
all of its planned tasks. The basic components of
computer based information system are:
- Hardware-these are the devices like the
monitor, processor, printer and keyboard, all of which
work together to accept, process, show data and
information.
- Software-are the programs that allow the
hardware to process the data.
- Databases-are the gathering of associated
files or tables containing related data.
- Networks- are a connecting system that
allows diverse computers to distribute resources.
- Procedures-are the commands for combining
the components above to process information and
produce the preferred output.

Fig 2. A four level of Information Systems

www.manaraa.com

International Journal of Advanced Computational Engineering and Networking, ISSN: 2320-2106, Volume-4, Issue-4, Apr.-2016

Information Systems And Software Engineering

50

The first four components (hardware, software,
database, and network) make up what is known as the
information technology platform. Information
technology workers could then use these components
to create information systems that watch over safety
measures, risk and the management of data. These
actions are known as information technology
services.
3. Difficulties in the development of
Software Engineering [26]
Errors, mistakes and fails in software are common,
usually a fail cause inconvenience but no serious
long-term damages or something as serious as huge
money loss or even health damage. However, in some
systems failure can have very big and serious
consequences. This type of system is called critical
system. There are three main types of critical
systems:
- Safety-critical systems. Fails in this system
may result in injury, death or environmental damage.
For example, space shuttle with astronauts on board.
If something goes wrong with navigation system,
people may die.
- Mission-critical systems. Fails in this system
may result in failure of some goal-directed activity
and main objective of the system may not be reached.
The same space-shuttle is an example of mission-
critical system, because even without astronauts taken
in count, the whole mission might be failed.
- Business-critical systems. Fails may cause
loss of money for customers using this system. Bank
money management system is an example.
4. Solutions for the development of System
Engineering [26]
System functional requirements may be generated to
define error checking and recovery facilities and
features that provide protection against system
failures. Non-functional requirements may be
generated to define the required reliability and
availability of the system.
Critical systems specifications’ objective is to
understand the risks faced by the system and generate
dependability requirements to cope with them. The
process of risk analysis consists of four steps:
Risk identification: Potential risks that might arise are
identified. These are dependent on the environment in
which the system is to be used. In safety-critical
systems, the principal risks are hazards that can lead
to an accident. Experienced engineers, working with
domain experts and professional safety advisors,
should identify system risks. Group working
techniques such as brainstorming may be used to
identify risks.
Risk analysis and classification: The risks are
considered separately. Those that are potentially
serious and not implausible are selected for further
analysis. Risks can be categorized in three ways:
- Intolerable. The system must be designed in
such a way so that either the risk cannot arise or, if it
does arise, it will not result in an accident. Intolerable

risks are those that threaten human life or the
financial stability of a business and which have a
significant probability of occurrence.
- As low as reasonably practical (ALARP).
The system must be designed so that the probability
of an accident arising because of the hazard is
minimized, subject to other considerations such as
cost and delivery. ALARP risks are those which have
less serious consequences or which have a low
probability of occurrence.
- Acceptable. While the system designers
should take all possible steps to reduce the probability
of an ‘acceptable’ hazard arising, these should not
increase costs, delivery time or other non-functional
system attributes
Risk decomposition: Each risk is analyzed
individually to discover potential root causes of that
risk. Different techniques for risk decomposition
exist. The one discussed in the book is Fault-tree
analysis, where analyst puts hazard at the top and
place different states which can lead to that hazard
above. States can be linked with ‘or’ and ‘and’
symbols. Risks that require a combination of root
causes are usually less probable than risks that can
result from a single root cause.
Risk reduction assessment: Proposals for ways in
which the identified risks may be reduced or
eliminated are made. Three possible strategies of risk
deduction that can be used are:
- Risk avoidance. Designing the system in such a way
that risk or hazard cannot arise.
- Risk detection and removal. Designing the system
in such a way that risks are detected and neutralized
before they result in an accident.
- Damage limitation. Designing the system in such a
way that the consequences of an accident are
minimized.

III. METHODOLOGY

Depending on the kind of problem to solve and the
context of the problem, Science or Engineering,
different research methods are used [4], [6].
Moreover, scientific research methods cannot always
be applied to engineering research problems [11].
Scientific research problems are similar to problems
broached in traditional sciences and can have either
an empirical or a cultural and social nature. When the
Science has an empirical nature, quantitative research
methods can be applied [9]; these methods try to
solve problems like: “what model method is more
efficient?”.

When the Science has a social and cultural nature,
qualitative research methods can be applied [12] and
these methods can seek to answer questions like:
“what factors make a given software process
unacceptable to the company?” or “why is one
information systems development tool more
acceptable than another?”. In both, it is necessary

www.manaraa.com

International Journal of Advanced Computational Engineering and Networking, ISSN: 2320-2106, Volume-4, Issue-4, Apr.-2016

Information Systems And Software Engineering

51

certain knowledge of the reality: the object of study is
an existing object in the world. Thus, this kind of
problems use the research methods proposed by
traditional sciences, as they study phenomena and
objects of the world regardless of how they were
created.

However, there is not any precise method to broach
Engineering research problems and the search for a
method appropriate to this field is becoming a
research field in its own right [5], [7], [8], [12], [13].
The solution of problems purely concerning
Engineering requires methods of a different kind
since in these cases it is directly possible to apply
neither empirical methods nor methods which have to
do with social and cultural component as the object of
study does not yet exist [14]. Furthermore, in the case
of Engineering, it is necessary a major component of
creativity, which makes it difficult to draw up a
universal method for solving problems within this
field. For instance, “what research method would be
valid for the specification of a new methodology for
software development?”. It would be necessary to
study existing methodologies, reflecting on them to
determine their advantages and disadvantages and
proposing a new one, which, while retaining the
advantages of the methodologies studied, would, as
far as possible, lack their shortcomings. Arriving at a
better final proposition would largely depend on the
creativity and common sense applied to the
construction of the new method. This method is
proposed by [10] and it is stated the method it is
applied in Engineering consist in the formulation of
experiences and the identification of the best
practices.

1. Types of Research Questions
Research questions may be about methods for
developing software, about methods for analyzing
software, about the design, evaluation, or
implementation of specific systems, about
generalizations over whole classes of systems, or
about the sheet feasibility of a task. Table 1 shows the
types of research questions software engineers ask,
together with some examples of specific typical
questions.

Table 1: Research questions in software engineering

2. Types of Research Results
Research yields new knowledge. This knowledge is
expressed in the form of a particular result. The result
may be a specific procedure or technique for software
development or for analysis. It may be more general,
capturing a number of specific results in a model;
such models are of many degrees of precision and
formality. Sometimes, the result is the solution to a
specific problem or the outcome of a specific
analysis. Finally, as Brooks observed, observations
and rules of thumb may be good preliminary results.
Table 2 lists these types, together with some
examples of specific typical questions.

Table 2: Research results in software engineering

3. Types of Research Validations
Good research requires not only a result, but also
clear and convincing evidence that the result is sound.
This evidence should be based on experience or
systematic analysis, not simply persuasive argument
or textbook examples. Table 3 shows some common
types of validation, indicating that validation in
practice is not always clear and convincing.

Table 3: Validation techniques in software engineering

www.manaraa.com

International Journal of Advanced Computational Engineering and Networking, ISSN: 2320-2106, Volume-4, Issue-4, Apr.-2016

Information Systems And Software Engineering

52

IV. COLLETION AND ANALYSIS DATA

1. Software Engineering
The challenge of collecting software engineering data
is to make sure that the collected data can provide
useful information for project, process, and quality
management and, at the same time, that the data
collection process will not be a burden on
development teams. Therefore, it is important to
consider carefully what data to collect. The data must
be based on well-defined metrics and models, which
are used to drive improvements. Therefore, the goals
of the data collection should be established and the
questions of interest should be defined before any
data is collected. Data classification schemes to be
used and the level of precision must be carefully
specified. The collection form or template and data
fields should be pretested. The amount of data to be
collected and the number of metrics to be used need
not be overwhelming. It is more important that the
information extracted from the data be focused,
accurate, and useful than that it be plentiful. Without
being metrics driven, over-collection of data could be
wasteful. Over collection of data is quite common
when people start to measure software without an a
priori specification of purpose, objectives, profound
versus trivial issues, and metrics and models.
Basili and Weiss (1984) propose a data collection
methodology that could be applicable anywhere. The
schema consists of six steps with considerable
feedback and iteration occurring at several places:
- Establish the goal of the data collection.
- Develop a list of questions of interest.
- Establish data categories.
- Design and test data collection forms.
- Collect and validate data.
- Analyze data.
The importance of the validation element of a data
collection system or a development tracking system
cannot be overemphasized.
2. Information Systems
Information System is an information system in
which part of the collection, transmission, storage and
data processing is done using the elements or
components of IT, that means modern computing and
communications, specialized software, procedures
and techniques plus specific specialized personnel.

Fig 6. information system map

An information system can be defined technically as
a set of interrelated components that collect (or
retrieve), process, store, and distribute information to
support decision making and control in a
organization. In addition to support decision marking,
coordination, control, information systems may also
help managers and workers analyze problems"
according to Laudon and Laudon.
Types of Information Systems:
- Transaction Processing Systems (TPS) - System that
performs or records daily routine transactions such as
sales order entry, payroll, employee record keeping,
and shipping.
- Management Information Systems (MIS) - It
designates a specific category of information to
middle management. It is to monitor and control the
business and predict future performance.
- Decision-Support Systems (DSS) - Support no
routine decision making for middle management.
Example of a no routine decision: What would be the
impact on production schedules if we were to double
sales in the month of December?
- Executive Support Systems (ESS) - Help Senior
management to address strategic issues and long-term
trends, both in the firm and in the external
environment. Examples: What will employment
levels be in five years? What products should we be
making in five years?
The computer system is part of the information
system, namely that part which includes collection,
processing and automated data transmission and
information from the information system, integrated
computer system – specific to certain areas of activity
– e.g. system failure, fine, banking) is the only
system that provides data entry and processing
multiple thereof depending on the various forms of
requests by users.
Information technology is a contemporary term that
describes a combination of computing technologies –
equipment and software – communication technology
– data transmission networks, images and voice.
Management information systems – management
models a domain regroups own procedures. In
practical activities to identify a series of domain-
specific models, such as: – manufacturing
technologies, specific sales, accounting.
System analysts are those specialists who understand
both aspects of facilities and limits offered by
information technology and data processing
requirements necessary information-decision process
of economic agents.
Transaction processing systems (SPT) are
applications of information system that lets the
collection, storage and processing of data resulting
from the conduct daily transactions, providing the
database.
The complexity of a large software system surpasses
the comprehension of any one individual. To better
control the development of a project, software
managers have identified six separate stages through

www.manaraa.com

International Journal of Advanced Computational Engineering and Networking, ISSN: 2320-2106, Volume-4, Issue-4, Apr.-2016

Information Systems And Software Engineering

53

which software projects pass; these stages are
collectively called the software development life
cycle:
* Requirements analysis; Specification; Design;
Coding; Testing; Operation and maintenance.

Fig 7: Effort required on various development activihes

(excluding maintenance)

Figure 7 shows the disposition of software costs in
developing a new project.

Fig 8: True effort on many large-scale software systems

The division of effort indicated in Figure 8 greatly
affects system development. Because of hidden
maintenance costs, techniques that rush development
and provide for very early initial implementation may
be trading early execution for a much more extensive
maintenance operation. The maintenance problem is
sometimes referred to as the "parts number
explosion.".
To avoid this growth, systems often receive updates,
called releases, at flexed intervals. A useful tool for
dealing with myriad maintenance problems is a
"systems database" started during the specifications
stage. This database records the characteristics of the
different installations. It includes the procedures for
reporting, testing, and repairing errors before
distributing the corrections.

V. DISCUSION OF RESULTS

We understood more about Information Systems and
Software Engineering. We understand what software
engineering is and why it is important; the
development of different types of software systems
may require different software engineering
techniques and some ethical and professional issues
that are important for software engineers. With

information systems, We understand more about it by
learning about the concepts, components of
information systems, Computer hardware, Computer
software, Telecommunications, Databases and data
warehouses.

At the same time, We also better understand the
difficulties in the development of an information
system or software. So that we may have plans to
develop them better.
Information Systems and Software Engineering are
two areas are so broad that I cannot learn in detail and
carefully about 2 system this large. Concepts related
to them a lot and I think I will try to learn them as
well as the history and process of system operation.

CONCLUSION

Although coming from different backgrounds and
using different approaches, the students produced
similar and compatible information systems. The
scheduling team’s familiarity with the project was
only a small advantage. The scheduling (information
systems) team used a database approach. First the
database tables were constructed and populated with
test data. Then the queries necessary for the forms
and reports were built. Finally the system was tested.
The billing (software engineering) team’s knowledge
of UML allowed them to understand the design and
build the desired system. They used the use cases,
associated classes, and sequence diagrams
extensively to black-box program the required
modules. After all the modules were completed and
tested they were combined into the system.
In general, software engineers adopt a systematic and
organized approach to their work, as this is often the
most effective way to produce high-quality software.
However, engineering is all about selecting the most
appropriate method for a set of circumstances so a
more creative, less formal approach to development
may be effective in some circumstances. Less formal
development is particularly appropriate for the
development of web-based systems, which requires a
blend of software and graphical design skills
Technically the resulting system was a great success.
I learned a great deal about systems requirements
elicitation, system design, software and database
construction, and systems implementation. They
learned the importance of good design
documentation. They also learned about the
difficulties in dealing with a real client unfamiliar
with computers and automation. The resulting system
was designed to improve on the existing system, and
was fundamentally built to the design. Clearly it was
a technical and educational success. There is a
shortage of skilled software professionals to fill the
needs of industry (Information Technology
Association of America, 2001). Graduates of schools
that have programs for conceptualizers, developers
and modifiers are well prepared to fill positions in

www.manaraa.com

International Journal of Advanced Computational Engineering and Networking, ISSN: 2320-2106, Volume-4, Issue-4, Apr.-2016

Information Systems And Software Engineering

54

software development and database development. It
matters little whether the education is in Software
Engineering, Information Systems, or Computer
Science.

REFERENCES

[1]. https://ifs.host.cs.standrews.ac.uk/Books/SE9/SampleChapter

s/PDF/Chap1-Introduction.pdf
[2]. http://agile.csc.ncsu.edu/SEMaterials/Introduction.pdf
[3]. http://www.britannica.com/topic/information-system
[4]. Chalmers, A. (1984). La Ciencia y cómo se Elabora. Siglo

XXI de España Editores, S. A.
[5]. Madrid.
[6]. Dobson, P. J. (2001) The Philosophy of Critical Realism-An

Opportunity for Information
[7]. Systems Research. Information Systems Frontiers, 3(2), pp.

199-210.
[8]. Fetzer, J. H. (1993) Philosophy of Science. Paragon House.

United States.
[9]. Glass, R.L., Vessey, I. Ramesh, V. (2002) Research in

Software Engineering: an analysis of
[10]. the literature. Information and Software Technology. Elsevier

Science B.V. N. 44, pp. 491-506.

[11]. Gregg, D. G., Kulkarni, U. R. and Vinzé, A. S. (2001)
Understanding the Philosophical

[12]. Underpinnings of Software Engineering Research in
Information Systems. Information

[13]. Systems Frontiers, 3(2), pp. 169-183.
[14]. Juristo N. and Moreno A. M (2001) Basics of Software

Engineering Experimentation.
[15]. Kluwer Academic Publisher.
[16]. Klein H. and Hirschheim R. (2003) Crisis in the IS Field. A

Critical Reflection on the State
[17]. of the Discipline. Journal of AIS, 4, 10.
[18]. Marcos, E. (2002) Investigación en Ingeniería del Software

vs Desarrollo Software. Actas
[19]. de 1er Workshop en Métodos de Investigación y

Fundamentos Filosóficos en IS y SI.
[20]. November, pp. 136-149.
[21]. Miles M. B. and Huberman, A. M. (1984). Quality Data

Analysis: A sourcebook of New
[22]. Methods. SAGE. NewBury Park-CA.
[23]. Myers, M. D. (1997) Qualitative Research in Information

Systems. MIS Quarterly, 21(2),
[24]. June, pp. 241-242.
[25]. 24. Wohlin C. Et al. (2000) Experimentation in Software

Engineering. An introduction. Kluwer
[26]. 25.http://web2.aabu.edu.jo/tool/course_file/lec_notes/902340

_SE%20Part%201.pdf
[27]. 26. http://freetonik.com/text/software-engineering-notes/



